. LED
Reaction Game 0 ANote...

. You can use any color LEDs
o What You Need: you want. Try different colors to
1x Crazy Circuits Bit Board see ifit affects the gameplay.
1 x micro:bit

4 x Crazy Circuits 10mm LEDs

1x Crazy Circuits Jumbo Pushbutton
1x Crazy Circuits Piezo Speaker
1/8" Maker Tape

1x LEGO Baseplate

Misc LEGO Bricks

Lo

'
How it Works: o Hb 57’—
© -®

The LEDs will flash on and off in order (one at a time) and

when the fourth LED is lit you should press the button. If ‘ I m‘
. R B EENEEEEEEEEEEER %)

you successfully press the button while the fourth LED is g o - = o o 9 o

lit, you'll get a point, and the score will be shown on the ‘ ‘ ’ ’ ‘ ‘ @ ‘ ‘ @ ‘

LED matrix on the front of the micro:bit

If you press the button when LED one, two, or three is lit

you will lose a point. (The default code will not go below

zero, since there isn't an easy way to display a negative
score on the LED display.)

Each time you press the button at the correct time the
speed will increase, making it more difficult to get the
timing right for the next time.

The piezo speaker will play two different tones, one

when you successfully press the button, and one when Scoreboard:
you press it at the wrong time. It will also play a song We're going fo use the buili-in LED matrix on the front of the
when you win by scoring the determined amount of micro:bit to display the score.
points.

Each time you get a point it will light up another LED, and if
If you want to abandon a game and sfart over you can you lose a point it will turn off an LED to indicate your score is
press the reset button. (Button B on the micro:bit) lower.

With the code we provide you can then set your winScore to a
maximum value of 25 if you want to use the entire matrix.

— For more educational guides and resources visit us at nascoeducation.com



Reaction Game

function num  num2  num3  numd @ Our lightLED function allows us to call the function with a set of parameters.
0 The Code: digital write pin P12 v to | num When we call our function we “pass in” four numbers. Our numbers need to
We've broken our program info seven sections. digitalimritelpinl [P o Qe be either a 0 or a 1, which corresponds to setting each pin to 0 or 1, which is

off or on. This allows us to turn on (and off) all four LEDs with a single
command.

move on to the forever loop, which is the most P o
igital write pin P15 v to num4 .
complex. If we have a block like so: [t lasay Q o o o

Don't worry if you don‘t understand all of the code!
You can always build the circuit, load the code, try
it out, and then make changes to the code to see
how it affects the gameplay.

We'll start by looking at the smaller sections then digital write pin P14 v to num3

It will turn on the first LED and turn off the rest of them. If we pass 0, 1, 0, 0
it will turn on the second LED and turn off the rest of them, etc.

In our resetGame function we set the variables for the game.

If we did not have a special reset button we could probably have put all of
these blocks into the on start section, but since we want to reset the game
without having to power off and back on the micro:bit this method makes
led enable < true ~ sense.

The on start section always runs first in our
program, and we used it fo set things that only
need o happen one time at the start.

on start

For this program we start by enabling the built-in
LED matrix, then calling the resetGame function
(more on that later). We also set pin 5 to up so we set pull pin PS5~ to up ~
can use it with the pushbutton connected to it, ‘
disable the built-in speaker, and then set pin 8 to
work with our Piezo Speaker.

Here’s what each of our variables does:

call resetGame

winScore sefs the score you need to

set winScore v to e
reach to win the game.

set built-in speaker gy set interval v to (@]

B imechange + to @) interval sets the amount of time each
LED remains it for.

analog set pitch pin P8 (write only) +

set whichlED + to @)
set score = to @) timeChange sets the amount of time we

i subtract from interval after each
(A RN Middle F RTTEVZ R Y1
D successful button press.

You'll notice our “event handler” for button B also
contains the call to resetGame. This allows us to
reset all our variables at any point while the game
is running if we want to start over.

on button B v pressed

The three variables that affect gameplay; winScore, interval, and timeChange,
are interdependent on each other. If you lower the winScore the game will be
easier, but you can then lower the interval to make it more challenging again.

A\ A note about “event handlers”
Typically if we want to check for something happening in our
program we need to use a conditional statement in our forever
section. We would add in the code blocks and the logic and test

call resetGame

for a specific condition (like a button press.) If you adjust the timeChange to a much higher number, or set the inferval
to a much lower value it might make the game unplayable, or just more

Event Handlers are special “functions” that run all the time, and challenging! We've set what we think is a good balance as a starting point,

continually check for a specific thing, like button B being pressed. but adjusting them and seeing what happens is part of the fun of game

development!
In this case we use the special event handler to trigger the game P

to reset the variables and start over.

— For more educational guides and resources visit us at nascoeducation.com



Reaction Game

o Displaying the Score:

If you built the version of the Reaction Game that
uses a 7 Segment Display you may remember that
the code to show the score was just a single block
of code. This time we need to do a bit more work
to display the score.

We have two functions, showScore which deals
with looping through all the LEDs and turning them
on one at a time, and clearScreen which looks
through all the LEDs and turns them off one at a
time.

You might also notice that the first thing our
showsScore function does is call the clearScreen
function. This is so we can always wipe the screen
completely before displaying the score. Since the
score could go down if you lose a point we had to
make sure we didn’t always just count up but also
had the ability to count down.

If you want to make your own scorekeeping
functions you can look at using the show number
command in MakeCode or the show leds
command.

We chose this method as a fun programming
challenge! And since we created it as functions
separate from our code we can easily use it in
other programs that need a score keeping system.

fnctio ®

call clearScreen
set tempScore v to scorev -~ o

set scoreX * to o

set scoreY + to o

tempScore v

plot x scoreX v y scoreY v

change scoreX » by o

if scoreX v =v e then

set scoreX v to o

change scoreY v by o
®

change index v by o

function ®
set scoreX * to o

| set scoreY + to o

| set index + to o

while indexv <+ @D
unplot x scoreX~ y scoreY
change scoreX + by °
| if scoreXv = o then

set scoreX v to o

change scoreY * by o
@
change index v by o

Our low-res/low-tech scoreboard
isn't fancy, but it gets the job done!

— For more educational guides and resources visit us at nascoeducation.com



Reaction Game

A\ The forever section of our code has a
lot going on, so we've broken it into four
sections to explain it.

If you checked out our guide titled Blink Without
Pause we showed that while it's common to
cause an LED fo blink on and off using the pause
command if you want non-blocking code (that
is, code that never “pauses” while running) you
can implement a timer that checks if a certain
number of milliseconds has passed and then
turn on (or off) your LED.

We use that method in the first part of the forever
section to change which LED is lit each time our
interval is passed.

We also check if our whichLED variable has
increased past 4 and set it back to 0 if it has.

In our next section of code we check which LED is
specified and then use our lightLED function to
turn on one of the four LEDs.

Our lightLED function call passes four values to
the function which means that with a single
block of code we can control all four LEDs. This is
much more efficient that using four blocks of
code to individually control all four LEDs within
each if/else statement.

forever

set currentMillis v to millis (ms)

if currentMillis + - v previousMillis ¥+ >+ interval v then

if myState v | =+~ 0 then
set myState v to °
else

set myState v to o

®

set previousMillis v to currentMillis v

C)

if myState v =< o then
change whichLeD v by (@)
if whichlED v > v @)  then

set whichlED v to ()

®

if whichtED v | =+ @) then
w110 @ @ @ O
set myState » to (@)

else if  whichtedv =+ @) then ©
a1 tightLEn @) €9 © ©
set myState v to ()

else if  whichtibv =v @) then ©

catt tightteo @) @ € ©

set myState v to o

else if  whichtiov =+ @) then ©

call 1ightLen @) @ © @

set myState v to o

else

call 1ightLen @) @ @ ©
®

— For more educational guides and resources visit us at nascoeducation.com



Reaction Game

if whichLED v+ =+ o and v digital read pin P5 » =v o then

change score ¥ by o
This section checks to see if the fourth LED is

active, and also checks if the button is being
pressed. If those conditions are met we increase play tone for 1/8 v beat
the score by one. decrease the interval by the
amount of time set for the timeChange, we play
a tone, and we pause for half a second.

change interval v by timeChange

pause (ms) @ElLRd

else if whichlED v | =+ ° and v digital read pin PSv | =w o then @
But what if the fourth LED is not active, and the change score ~ by e
button is pressed? Then we subtract one from
the score, play a different tone, and again pause (LT fRl 1/3 ~ beat
for half a second. pause (ms) €N

else

Lastly, we have a check if the score is less than
one and if it is, we set it to zero. If we remove this if . o o
check then our score could keep decreasing fo
negative numbers, which might make the set score v to o
gameplay even more challenging! Feel free to ®

remove this section or adjust it in some other
way.

call showScore

if score v  =v winScore ¥ then
The call showScore block handles calling the
function fo display the score on the LED mairix. | call LightLED 0000

start melody power up *+ repeating once +
And finally, we check to see if our score is equal
to the winScore, and if it is, you won the game!
We then turn on all the LEDs, play a victory song, call resetGome
wait for two and a half seconds, then reset the ®
game so we can try again.

(LW CHN 2500 «

— For more educational guides and resources visit us at nascoeducation.com



