Designs in the Coordinate Plane Table of Contents

Note: The letters and numbers in parentheses following the activity name reference specific Common Core State Standards for Mathematics addressed by the activity

1. Activity 1 Hexagon

Addition \& Subtraction of Two Integers (6.NS 8, 7.NS 3)
3. Activity 2 Eight-Pointed Star

Addition \& Subtraction of Two Integers (6.NS 8, 7.NS 3)
5. Activity 3 Three Dimensional Block

Order of Operations Using Signed Numbers (6.NS 8, 7.NS 3)
7. Activity 4 Line Design of a Parabola

Solving Equations (6.NS 8, 8.G 3, A-APR 1)
9. Activity 5 The Tribar Impossible Design

Evaluating Algebraic Expressions (6.NS 8, 8.G 3, A-APR 1)
11. Activity 6 Three Pronged Connector Impossible Design

Two Simultaneous Linear Equations (6.NS 8, 8.EE 8, A-REI 6)
13. Activity 7 Eight-Pointed Stars

Order of Operations with Signed Numbers (6.NS 8, 7.NS 3, 8.G 3)
15. Activity 8 Symmetrical Design, Extended by Properties of Symmetry

Addition \& Subtraction with Three Integers (6.NS 8, 7.NS 3, 8.G 3)
17. Activity 9 Symmetrical Design, Extended by Properties of Symmetry

Order of Operations with Integers (6.NS 8, 7.NS 3, 8.G 3)
19. Activity 10 Hexagon, Extended by Properties of Symmetry

Square Roots \& Absolute Values (6.NS 8, 7.NS 3, 8.G 3)
21. Activity 11 Symmetrical Octagon

Two Simultaneous Linear Equations (6.NS 8, 8.G 3, 8.EE 8, A-REI 6)
23. Activity 12 Tessellated Triangles

Word Problems Relating x and y (6.NS 8, 7.EE 4, 8.G 3)
25. Activity 13 Four Parabolas in a Square

Solving Equations (6.NS 8, 8.G 3, A-APR 1)
27. Activity 14 Symmetrical Design, Extended by Properties of Symmetry

Evaluating Algebraic Expressions (6.NS 8, 8.G 3, A-APR 1)
29. Activity 15 Star-Shaped Design, Extended Twice by Properties of Symmetry

Solving Equations (6.NS 8, 8.G 3, A-APR 1)
31. Activity 16 Symmetrical Design, Extended by Properties of Symmetry

Missing Terms in Sequences (6.NS 8, 8.G 3)
33. Activity 17 Dodecagon

Proportions (6.NS 8)
35. Activity 18 Stylistic Star Design

Addition \& Subtraction with Fractions (6.NS 8, 8.G 3, A-APR 1)
37. Activity 19 Eight-Pointed Star Design

Evaluating Algebraic Expressions (6.NS 8, 8.G 3, A-APR 1)
39. Activity 20 Symmetrical Design, Extended Twice by Properties of Symmetry

Solving Equations (6.NS 8, 8.G 3, A-APR 1)
41. Activity 21 Block Design, Extended by Properties of Symmetry

Order of Operations (6.NS 8, 7.NS 3, 8.G 3)
43. Activity 22 Line Design of Two Parabolas

Adding Signed Numbers, Square Roots, Absolute Values (6.NS 8, 7.NS 3, 8.G 3)
45. Activity 23 Eight-Pointed Star Design

Word Problems Relating x and y (6.NS 8, 7.EE 4, 8.G 3)
47. Activity 24 Octagonal Design

Word Problems Relating x and y (6.NS 8, 7.EE 4, 8.G 3)
49. Activity 25 Line Design of Cardioid

Following Directions (6.NS 8)
51. Answer Key
53. Notes to Teacher
56. Sample Overhead Design
57. Extra Grids
\qquad
Solve for x in each equation. Then use the value of x and the given value of y to form an ordered pair of numbers (x, y).

χ	y		
$\chi+2=-3$	5	A	5)
$2 x-6=-14$	5	B	5)
$2 x=-3+\chi$	5	C	5)
$2 x-10=-14$	5	D	5)
$4 x=x-3$	5	E	5)
$2 x-6=x-6$	5	F	5)
$3 x-4=-1$	5	G	5)
$2 x-5=x-3$	5	H	5)
$3 x=3+2 x$	5	1	5)
$4 x-5=3 x-1$	5	J	5)
$2-2 x=7-3 x$	5	K	5)
$4 x+2=-3+3 x$	4	L	4)
$3 x+4=2 x-1$	3	M	3)
$3 x-1=-6+2 x$	2	N	2)
$4-2 x=-1-3 x$	1	0	1)
$x-3 x=-(5+3 x)$	0	P	0)
$3 x-1=9+x$	4	Q	4)
$3 x-12=x-2$	3	R	3)
$\chi+2-3 x=5-3 x+2$	2	S	2)
$6 x-2=3+5 x$	1	T	1)
$3 x-2=-5+4 x-2$	0	U	0)

Locate the ordered number pairs as points in the coordinate plane and label each point with its corresponding letter.

Draw segments $\overline{\mathrm{AP}}, \overline{\mathrm{AK}}, \overline{\mathrm{KU}}$.
Draw segments $\overline{\mathrm{AQ}}, \overline{\mathrm{BR}}, \overline{\mathrm{CS}}, \overline{\mathrm{DT}}, \overline{\mathrm{EU}}$.
Draw segments $\overline{\mathrm{KL}}, \overline{\mathrm{JM}}, \overline{\mathrm{IN}}, \overline{\mathrm{HO}}, \overline{\mathrm{GP}}$.

The design you have drawn is symmetrical with the Y axis as the axis of symmetry.
Now, draw another symmetrical design with the X axis as the axis of symmetry. For example, $A_{1}(-5,-5)$ is the mirror image of A, and $Q_{1}(5,-4)$ is the mirror image of Q.
Draw segment $\overline{A_{1} Q_{1}}$ which is the mirror image of $\overline{A Q}, \overline{B_{1} R_{1}}$ which is the mirror image of $\overline{B R}$, and so on.

